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We consider thermally excited passages and droplets formed between fluid membranes in a lamellar phase.
We show that they induce entropic attractive interactions which compete with Helfrich’s entropic intermem-
brane repulsion. This competition determines the intermembrane distance /,,,, lamellar phases reach at transi-
tions to isotropic fluid membrane phases. In general, [, is much smaller than the membrane persistence
length and crucially depends on membrane saddle-splay (*“Gaussian™) rigidity.

PACS number(s): 68.15.+e, 05.40.+j, 82.70.Kj

In recent years significant attention has been devoted to
statistical physics of fluid membranes [1], and their lamellar
and random spongelike phases [2—10]. Membrane fluctua-
tions induce striking effects such as Helfrich’s intermem-
brane repulsion [3] stabilizing lamellar phases [7]. Free en-
ergy of this entropic (“steric’) repulsion between a pair of
membranes at distance [ is, per unit membrane area (u.a.),

steric _ (kBT)2
F.> —CODSIXT , (1)

where « is membrane bending rigidity [3,4]. Membrane fluc-
tuations are essential also for understanding the lamellar
phase melting which occurs when the intermembrane dis-
tance / reaches a certain maximal distance /,, [5,8]. de
Gennes and Taupin [8] and more recent studies [5,10] iden-
tified I,,, with fluid membrane persistence length &, [9].
Recent careful experiments, however, appear to contradict
this indicating that I, <&, [11].

Prompted by this, here we discuss effects of droplets
(vesicles) and passages [as in Fig. 1(a)] thermally excited in
a lamellar, L, phase of surfactant bilayer membranes. We
show that their presence induces entropic attractive inter-
membrane interactions which compete with the Helfrich’s
steric repulsion in Eq. (1) and limit /,,. We find that, in
general, /. <¢,.. In addition to the persistence length,
&,.=a exp(4mk/akgT) (a is a molecular length scale, and
a=3 [9]), we reveal another important scale
£z=a exp(—4mi/a’'kpT), where a’' =%, and & is the mem-
brane saddle-splay (“Gaussian™) rigidity constant [12,13].
We find two distinct lamellar phase behaviors.

(i) Regime A (“Passage regime”). For 0<-—k
<(a'/a)k=%k, one has a<<£;<¢, at low T. In this regime
Imax~&x<€,. For I=~1_,,, there are numerous passages con-
necting membranes, whereas droplets are rare. Such a lamel-
lar phase melts either into a very dilute droplet phase, or to a
sponge phase [if ||| — $x]<O(1)kgT].

(ii) Regime B (“Droplet regime”). For —k>{«k, one
has §;>¢, at low T. In this regime [n~&urop
=€ (£ /E)% 10N <g <. For I~ly,, there are nu-
merous droplets between lamellas, whereas passages are
rare. Such a lamellar phase melts either into a droplet rich,
globular membrane phase or to a sponge phase [if
lld—$xl<O(1)ksT].

Passage regime A apparently corresponds to the experi-
mental situation in egg-lecithin lamellar states studied by
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Harbich et al. [12]. They observe a rise of the density of
passages, n,, with increasing I. We suggest that this rise
follows the law n,~1% ~2=1%3, for I <],y .

We base our study on the grand-canonical description of
fluid membrane ensembles [4,5,10]. Each membrane is char-
acterized by the energy E=o0A +E ., where A is the mem-
brane area, o is the surface tension (— oa? is the chemical
potential of surfactant molecules), and E,, is the membrane
bending energy,

. , @

K -
ECUW=J dA[— H*+ kG

where H and G are, respectively, mean and Gaussian mem-
brane curvature [13]. As in previous studies, we coarse-grain
short-scale membrane fluctuations [2,5,10]. This induces a
renormalization of the elastic constants in (2) which attain a
length scale dependence of the form «(I)=(akgT/
4m)In(€, /L), and k(L)=(a'kzT/4m)In(L/&) [14].

@ ® 1
0= 1
Foa | \ ;
¥ |
o0 =0 6>0,
1 L ——
Im
6 <O
Hs Ds

LAMELLAR

\B\ /
= ‘"kBTq_ catenoid- |

K -1 —1t 0
-lamellar
.2 9
X 590?‘\\

DROPLET o

“10k/9 0

FIG. 1. (a) A passage geometry. (b) ¥ (/,0) for various values of
o. Inset: Passage mediated interaction between lamellas. (c) Sche-
matic phase diagram of fluid membrane systems, for a fixed «, in
the (ug, k) and (P, «) planes.
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First, we consider a single passage connecting two lamel-
las at distance /, as depicted in Fig. 1(a). Its curvature energy
(2) can be estimated as

\ 2
r

é) —47k(r), 3)

where r is the size of the passage neck, and ¢ is the size of
the passage deformation region [Fig. 1(a)]. At distances from
the neck smaller than &, the presence of a passage curves the
membranes giving rise to the first term in (3) [15]. The sec-
ond term in (3) is the Gaussian curvature contribution [12].
The passage deformation region is, approximately, a catenoid
[12,15]. This gives the condition I~ 2r In(&/r) relating ¢ and
r in (3). With this constraint, we minimize (3) and find equi-
librium passage energy and sizes,

Epass=0(1)K(§)(

7
Epass=— a'kBTln( §—) , (4)

12

k(l)

(kBT

() ~
"esT

£q=0(1) (5a)

i
req=0(1)————K(l), (5b)

ln——kB T

for K(1)>kpT, ie., I<E,. Epus, Eq. (4), is dominated by
the Gaussian curvature contribution to Eq. (3). E g de-
creases with increasing / and, moreover, becomes negative
as [ crosses £;. By (5a), deformation region size &, in-
creases with /.

Next, consider two passages at distance R. They interact
via the repulsive potential U,,(R)=~ k(R)(rq/R)* [15], for
R<{.q, when the passage deformation regions overlap. By
(5), Upp=~kpT for R~§.,. For R>&.q, U,,<kpT, and the
passage interaction can be ignored. For R<§.,, U,,>kpT.
Thus the passage interaction can be viewed as a hard core
repulsion, with effective hard core size ~§,. Two-
dimensional fluid of passages, between a pair of neighboring
membranes in a lamellar phase, can be described grand ca-
nonically by

o1 d*X;
Zpass: 2 —_'H ﬁ e‘HN/kBTa (6)
N=0 ti=1
with  AA=[’[kpT/k()]* [16], and Hy=NE
+32,<jUpp(X;—X;). Up,, can be ignored when

|X;—X;|> &, i.c., when the passage number per unit area,
n,, is less than ‘fe‘qz. In this dilute regime, (6) yields

np(l)~ngy(l), with
(O\21 1\
wi=(57) wlg] o

Free energy of this dilute passage fluid is, per unit membrane
area,
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FPS(1)= — kpTno(l)~ — 17, (8)

By (7), n,(l) increases as 1% 72=* Such a growth of the
passage density was indeed observed by Harbich et al. in
egg-lecithin membrane stacks [12]. By (7) and (8),

no€2y=(1/1,)* <1, with

 kyT
Kk(€R)

For I>1,, passage deformations regions overlap and we
must take into account passage interactions. As noted above,
they are effectively hard core repulsions, with hard core size
~§.q. Free energy of the interacting passage fluid can be
thus found by minimizing

l,=

3/a’
) i~ &

n
— p 2 )
Fﬁ.ais(”p’l)—kBT”pmm ~kpTnpln(1=n,&), ©)

over the passage density n,. The first term in (9), alone,
yields the dilute regime results (7) and (8), whereas the sec-
ond term is the free energy increase due to excluded volume
effects. For dense passage regime, n0(1)§§q=(l/l*)“'> 1,
Eq. (9) yields n,~ 1/§§q, i.e., the passage separation ~ ¢,
whereas

kT >
Fg?:S(l)% — 0(1) ?— lﬂ[n()(l)ggq]
eq

a' (kgT)?

In— . (10)

=0 =y I

FP%3(1) is sketched in the inset to Fig. 1(b). For any [, to a
good approximation,

kyT
€eq

(kpT)*
x(D)I?

Fﬁa:s(l):—o(l) ln[l+ﬂo(l)§§q]

U I
+l— |
Lo (11)

=—-0(1)

In

reducing to (8) for /<€l, , and to (10) for />, . The inset to
Fig. 1(b) indicates that passages induce an attractive interac-
tion between membrane pairs tending to keep membranes at
a preferred distance /=0(1)l,~ &;. Moreover, by (10) we
see that, for />/ , this passage induced attraction actually
dominates over Helfrich’s steric repulsion (1). Thus total free
energy per unit area, F3o (1) + FP*(1), also has a minimum
at an I=0(1)/,~é§:.

In the presence of passages, lamellar phase (l.p.) free en-
ergy per unit volume (u.v.) is Fhﬂ;'(a)z[‘lf(l,(r)]mm(,) [4],
with

1 _
¥(l,0)= 7[a+FS'e“°(1)+F{:“SS(I)]. (12)

u.a. .a.

In the absence of the passage term, ¥([/,0) has a single
minimum for 0<0, at [=1I~|o| ™% Thus ., would di-
verge as 0—0. By de Gennes and Taupin [8], this infinite
swelling of the lamellar phase stops at a melting point where
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l.q reaches Iy~ &, and lamellas crumple. Our inclusion of
the passage free energy in Eq. (12), however, changes this
picture radically for —k<gx when £;<¢, (regime A), see
Fig. 1(b). /., minimizing (12) remains finite as 0—0, when
legemO1)1,,~ ;<€ and the lamellar phase becomes pas-
sage rich. This passage rich lamellar phase remains stable in
a range of positive values of o, where a dilute droplet phase
is typically favored [10]. For £;<¢,, free energy of this
droplet phase can be shown [by Eq. (19) below] to be zero
compared to the energy scale of (12). Thus the lamellar
phase transforms into the droplet phase when the minimum
of (12) goes to zero. This occurs for a positive
o=0,=+0(1)(kgT)*/x(l,)I2 [see Fig. 1(b)]. At the tran-
sition, / reaches

lmu:0(1)1*~§k<§m

for —k<(a'/a)k=4x and ||k|— $x|>O(1)kzT. Under these
conditions (regime A) one thus has a strong first order phase
transition between a passage rich, but still orientationally
well ordered lamellar phase (as /;,,~&:<£,) and a very
dilute droplet phase. Prior to this transition, the passage rich
smectic-lamellar phase most likely undergoes a weaker tran-
sition to a highly anisotropic catenoid-lamellar phase in
which passages form regular lattices (with the in-layer lattice
constant ~ &, ~[ x(1)/kpT]"?I>1). Such a structural change
was indeed observed in egg-lecithin lamellar structures [12].
Let us now consider the lamellar phase behavior in the
opposite case with &,<&;, occurring for —k>%x and
[l|—$«d>O(1)ksT (regime B). Then, provided I<¢,,
passages will be, by Eq. (7), very dilute. In this regime an
important role is played by thermally excited droplets
(vesicles) confined between lamellas, as discussed hereafter.
Curvature free energy (2) of a single nearly spherical
droplet of radius R is Ego(R)=8mk(R)+4mk(R)
=(2a—a')kpTIn(£40p/R), where

gK a'/Qa—-a')
gl:lxop= §K( E;)

472K+ k)

GTGa—an| 1

=a exp

is a new, “droplet” scale. For 2x>—k>%«, one has
a<€yop<€.<§i at low T. Next, consider a polydisperse
ensemble of droplets thermally excited between two lamellas
at distance /. Its grand-canonical free energy is, in a dilute
limit of noninteracting droplets [10],

F&P= _j T f dR d*X dz pgep(R), (14)
with
1 47IR*+E 40p(R)
Parop(R) = TAR)TEXP| ~ T . (15

Parop(R)dR d?X dz is the number of droplets with radii in
(R,R+dR) and centers positioned in d?Xdz, and
AR=[kgT/k(R)]"?R (z direction is perpendicular to lamel-
las). For droplets confined between two lamellas (2R<)),
Eq. (14) yields, after integrating over z [fdz=I—2R], the
droplet free energy, per unit area of a lamella,
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FERD= ko [ dRU-2R)pseg(B). (16
a
By (16) and (15), for |o|l?/kzT<1, one finds
FaP(l)=foP(l) +IF 3P 17)
Here
l 2 lZa—a'—Z
fﬂ.‘;’."(l)=+0(1)[';( ;] ——~+ 18
B §drop

fE°P(1) is an attractive interaction between lamellas. F 4P in
(17) is the free energy, per unit volume, of the droplet phase,

4 K2 a2a—a'—3
FR=-0)7=—F—. (19)
uv kBT girlz)pa

In the regime B, free energy of the lamellar phase is, per
unit volume,

u.a.

Fl.p‘ — 1[0'+F5(eric(l) +Fdr0p(l)]
uwv. l u.a.

min(/)

Thus, by (17), we find the difference between free energy
densities of the lamellar and the droplet phase in the form
Fih—FiP= [¥(7,0) Iminzy » With

V(,0)= Lo+ PS4 Qo)

fEOP(I) here is the droplet mediated interaction, Eq. (18).
With changing o, ¥ (/,0) in (20) behaves (once again) in the
manner depicted in Fig. 1(b). For a critical value of o,
0'=a'c=—0(1)(kBT)2/K(lmax)lﬁm, when [ reaches its
maximal value

)3/(2a—a')

Imax=0(1 )( §drop~ §drop > (21)

K( gdrop)

the free energy difference, [4(1,0) I miny » vanishes and the
lamellar phase melts into the droplet phase. This droplet
phase is actually a globular phase. The largest droplets in this
phase are affected by excluded volume effects which limit
their size Ry,x [17]. Volume fraction occupied by droplets
~ [Rmx(47/3)R3p(R) is O(1). This gives

2/(2a~a')
) §drop~ gdrop .

R“‘“zo(”(x(gmp)

S0, Imax~Rmax™~ Earop<€x<€z, in the regime B with
—k>4«k and |—k—x|>0(1)k,T [18].

On the other side, for x and k in the range
|—k—2x|<O(1)kgT, one has Rax~ Edrop™~ €~ €x . Thus
creation of passages between the largest droplets (with
R~R .y is favoret‘;i'in this range. This transforms the globu-
lar phase into a sponge phase, which can be envisioned as a
condensed liquid phase of droplets connected by passages. A
schematic phase diagram summarizing regimes A and B is
given in Fig. 1(c). The phase diagram is given for a fixed
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k>kpT, in the (usk) and (P,,k) planes. Here
ps=—oa? is the surfactant chemical potential, and @ is the
surfactant volume fraction, ®,=adF,, /do [5]. Membrane
phases with large structural scales >a occur only in a range
of negative k, 0<— k<2k, consistent with recent careful
experiments of Strey [19]. In regime A, one has a coexist-
ence of a very dilute droplet phase (d.p.) with a passage rich
catenoid-lamellar phase (1.p.). At their coexistence,

2a—a’ a
a (lmax) ~i(§£)2 <<q)§P~L~_
gfc §K lmax gk

On the other side, in regime B, a dense droplet, globular
phase coexists with a droplet rich lamellar phase. At their
coexistence, <I>g‘p'%a/Rmax~¢i‘P‘~a/lmax~a/§dmp [18].
Finally, let us discuss recent experimental studies of Porte
et al. [11]. For their ternary system (involving a cosurfac-
tant), k~3kgT [thus £,~300000a], whereas ik is not
known. By taking tentatively that one is in regime A with
k=—1s« (a plausible value in the absence of cosurfactants

a
dp.
PP~

l max gdrop
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[20]) for the lamellar phase we get [,,,~&:~100a and
<I>§'p‘%a/lmax~1% at the coexistence with the catenoid-
lamellar phase. Thus [,,, is some three orders of magnitude
smaller then £, , in a striking consistency with the experi-
ments [11]. The experimental &P varies from 5% up to 50%
across the phase diagram. This variation is probably due to
the cosurfactant (its amount is varied in the phase diagram).
Cosurfactants are likely to affect «, and thus, also,
Imax~ &< We stress, however, that these experimental data
were actually obtained at the coexistence of the lamellar with
the sponge phase (rather than the catenoid-lamellar phase).
The sponge phase is in Fig. 1(c), present in a range of k
around — %k vanishing as 7—0. At room temperatures,
however, this range could be wide enough to explain the
stability of the sponge phase of Porte et al.

Note added. After completing this research, we learned
that Morse independently reached similar conclusions [21].
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